Abstract

This article presents an adaptive resonance theory predictive mapping (ARTMAP) model, which uses incremental cluster validity indices (iCVIs) to perform unsupervised learning, namely, iCVI-ARTMAP. Incorporating iCVIs to the decision-making and many-to-one mapping capabilities of this adaptive resonance theory (ART)-based model can improve the choices of clusters to which samples are incrementally assigned. These improvements are accomplished by intelligently performing the operations of swapping sample assignments between clusters, splitting and merging clusters, and caching the values of variables when iCVI values need to be recomputed. Using recursive formulations enables iCVI-ARTMAP to considerably reduce the computational burden associated with cluster validity index (CVI)-based offline clustering. In this work, six iCVI-ARTMAP variants were realized via the integration of one information-theoretic and five sum-of-squares-based iCVIs into fuzzy ARTMAP. With proper choice of iCVI, iCVI-ARTMAP either outperformed or performed comparably to three ART-based and four non-ART-based clustering algorithms in experiments using benchmark datasets of different natures. Naturally, the performance of iCVI-ARTMAP is subject to the selected iCVI and its suitability to the data at hand; fortunately, it is a general model in which other iCVIs can be easily embedded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.