Abstract
Implosion experiments performed at Centre d'Etudes de Limeil-Valenton in the indirect drive scheme using the two-beams Nd:glass laser facility Phebus at the energy level = 6 kJ (blue light) are presented. A final density of compressed DT close to 100 ρ0 has been obtained; it has been deduced from radiochemistry of the activated silicon atoms in the pusher. The best irradiance uniformity on the microballoon was evaluated to = 15% rms. Phebus has also been equipped with an optical fiber oscillator to study the effect of a smoothing technique on coupling processes: It appeared that at 0·53 μm absorption efficiency is increased by =15–20%. With the eight-beams Octal laser, hydrodynamic instabilities development in accelerated planar targets has been investigated both for direct and indirect drives; the mixing zone detected at the light-heavy interface does not present visible bubble-and-spike like structures and is less developed in the indirect configuration. Atomic physics in laser plasmas is also deeply studied; a particular effort has been made on absorption spectroscopy, a powerful diagnostic of ionization dynamics in cold and dense plasmas. Experiments have been realized either in multilayered targets or using rear-side X-ray emission of thin Au foils to heat the samples. To reach fuel ignition conditions, more powerful lasers, in the range of megajoule, will be needed. Their design needs further technological developments to reduce the capital cost in $/W. At Limeil, we work mainly on high-damage threshold optical coatings, using the sol-gel process, high-quality, low-cost mirror fabrication, using the replica technics, and incoherent laser pulse generation for beam smoothing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.