Abstract

Given the electromagnetic interference (EMI) and heat aggregation issue faced by electronic components, an urgent need exists to integrate EMI shielding and thermal conductivity in one material. Herein, a novel lightweight porous Ti3SiC2 ceramic with ordered structural arrangement was fabricated by using budget-friendly raw materials through ice template design and in-situ reaction synthesis. Leveraging the excellent conductivity and thermal conductivity of Ti3SiC2, a dual-functional advanced material with efficient EMI shielding and thermal management capabilities was obtained. At room temperature, porous Ti3SiC2 ceramics can achieve a shielding effectiveness of 35.44 dB and a thermal conductivity of 12.17 W/mK, with performance that can be tuned by porosity. In further, the porous Ti3SiC2 ceramic can work stably in thermal environments from room temperature to 700 °C or in corrosive environments rich in acid, alkali, and salts due to its excellent high temperature oxidation resistance and corrosion resistance. In view of the dual-functional characteristics and the stability of operation in harsh thermal environments, ordered porous Ti3SiC2 ceramics are promising for modern maritime and aerospace applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.