Abstract

We show that the PeV neutrinos detected by IceCube put unique constraints on "secret" interactions of neutrinos with the cosmic neutrino background (C$\nu$B). The coupling must be $g <0.03$ for the mediating boson mass $m_{X} \lesssim 2$ MeV, $g/m_{X} < 5$ GeV$^{-1}$ for $m_{X} \gtrsim 20$ MeV, and $g/m_{X} < 0.07$ GeV$^{-1}$ in between. We also investigate the possibility that neutrino cascades degrade high-energy neutrinos to PeV energies by upgrading C$\nu$B where the energy flux of PeV neutrinos can coincide with the Waxman-Bahcall bound or the cosmogenic neutrino flux for protons, thanks to energy conservation. However a large coupling is required, which is disfavored by laboratory decay constraints. The suppression of PeV-EeV neutrinos is a testable prediction for the Askaryan Radio Array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.