Abstract

This article developed an inexact chance-constrained semi-infinite programming (ICCSIP) method for the energy management system under functional interval uncertainties. The approach not only considers the left-hand interval parameters, right-hand distribution information, and the probability of violating constraint, but also deals with functional interval uncertainty, which extends the range of the uncertainties. A regional energy management system is applied to illustrate the applicability of the ICCSIP approach. In consideration of energy sources allocation, fuel prices, and environmental regulations, a systematic planning of the regional energy structure is desired to bring a significant increase of economic benefit and improvement of environmental quality. This problem can be formulated as a programming model with an objective of minimizing the overall system costs subject to a number of environmental, economic and energy sources availability constraints. The programming results indicate that reasonable and useful decision alternatives can be generated under different probabilities of violating the system constraints. The obtained results are useful for decision makers to gain an insight into the tradeoffs among environmental, economic and system reliability criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.