Abstract

Monoplane and biplane Wells turbines for wave power conversion have hysteretic characteristics in a reciprocating flow. In this paper, the mechanisms of the hysteretic behaviors were elucidated based on unsteady 3 dimensional Navier–Stokes numerical simulations. For the monoplane Wells turbine, the hysteretic loop is opposite to the well known dynamic stall of an airfoil. It was found that the hysteretic behavior was associated with a streamwise vortical flow appearing near the suction surface. For the biplane Wells turbine, the hysteretic behavior was similar to that of the monoplane at lower attack angles, but the hysteretic loop similar to the dynamic stall was observed at higher attack angles, which was attributed to unsteady flow separation near the hub and the trailing edge of the suction surface of the upstream blade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.