Abstract

Insulin replacement is the current therapeutic option for type-1 diabetes. However, exogenous insulin cannot precisely represent the normal pattern of insulin secretion. Another therapeutic strategy is transplantation of pancreatic islets, but this is limited by immune rejection, intrinsic complications, and lack of donor availability. Stem cell therapy that results in the regeneration of insulin-producing cells represents an attractive choice. However, with advancing age, stem cells also undergo senescence, which leads to changes in the function of various cellular processes that result in a decrease in the regeneration potential of these aging stem cells. In this study, the effect of young and aging mesenchymal stem cells (MSCs) on the regeneration of pancreatic beta cells in streptozotocin (STZ)-induced type-1 diabetic mice was observed after hypoxic preconditioning. Hypoxia was chemically induced by 2, 4-dinitrophenol (DNP). Plasma insulin and glucose levels were measured at various time intervals, and pancreatic sections were analyzed histochemically. The effect of DNP was also analyzed on apoptosis of MSCs by flow cytometry and on gene expression of certain growth factors by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). We observed that hypoxic preconditioning caused changes in the gene expression levels of growth factors in both young and aging MSCs. Young MSCs showed significant regeneration potential compared with the aging cells in vivo. However, hypoxic preconditioning was able to improve the regeneration potential of aging MSCs. It is concluded from the present study that the regeneration potential of aging MSCs into pancreatic β-cells can be enhanced by hypoxic preconditioning, which causes changes in the gene expression of certain growth factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.