Abstract

Antiangiogenic therapy is a potent cancer treatment, however, the possibility of recurrence and resistance to this approach remains. Here we show that hypoxia and low-nutrition double-deprivation stress induces reversible tumor aggressiveness. In a stress-cycle-dependent manner, murine melanoma cells showed morphological changes, up-regulated phospho-Akt, and abnormal regulation of multiple genes including fibroblast growth factor-21, a metabolic regulator, resulting in increased cell proliferation in vitro, and increased tumorigenesis and invasive potential in vivo. In this system, altered cellular metabolism participates in the adaptation of tumor to the double-deprivation stress. Our results suggest the targeting of a minor population of cancer cells resistant to both hypoxia and low nutrition to be an effective new antitumor strategy in combination with antiangiogenic therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.