Abstract

This work addresses the problem of adversarial robustness in deep neural network classification from an optimal class boundary estimation perspective. It is argued that increased model robustness to adversarial attacks can be achieved when the feature learning process is monitored by geometrically-inspired optimization criteria. To this end, we propose to learn hyperspherical class prototypes in the neural feature embedding space, along with training the network parameters. Three concurrent optimization functions for the intermediate hidden layer training data activations are devised, requiring items of the same class to be enclosed by the corresponding class prototype boundaries, to have minimum distance from their class prototype vector (i.e., hypersphere center) and to have maximum distance from the remainder hypersphere centers. Our experiments show that training standard classification model architectures with the proposed objectives, significantly increases their robustness to white-box adversarial attacks, without adverse (if not beneficial) effects to their classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.