Abstract

The Gaussian mixture model is a well-known classification tool that captures non-Gaussian statistics of multivariate data. However, the impractically large size of the resulting parameter space has hindered widespread adoption of Gaussian mixture models for hyperspectral imagery. To counter this parameter-space issue, dimensionality reduction targeting the preservation of multimodal structures is proposed. Specifically, locality-preserving nonnegative matrix factorization, as well as local Fisher's discriminant analysis, is deployed as preprocessing to reduce the dimensionality of data for the Gaussian-mixture-model classifier, while preserving multimodal structures within the data. In addition, the pixel-wise classification results from the Gaussian mixture model are combined with spatial-context information resulting from a Markov random field. Experimental results demonstrate that the proposed classification system significantly outperforms other approaches even under limited training data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.