Abstract

An analysis technique applicable to the problem of leeward vortex-induced heat transfer on a sharp cone at high angles of incidence under hypersonic laminar flow conditions is presented. The analysis, a three-dimensional hypersonic viscous shock layer approach in conjunction with a numerical solution procedure, is shown to be both applicable and accurate based on comparisons of heat-transfer distributions, surface pressure distributions, and leeward meridian flow-field profile measurements taken in a hypersonic wind tunnel. Detailed calculations of the embedded vortex flow field on the leeward side of the cone are presented in such a manner as to clearly portray exactly how embedded vortex flow influences local heating rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.