Abstract

The results of an experimental and numerical investigation of unsteady hypersonic nitrogen flow (M∞ = 21 and the unit Reynolds number Re∞1 = 6×105 m−1) past an integrated flat-plate/beveled whistle model are presented. The calculations using the ANSYS Fluent package are carried out for different geometries of the whistle cavity and angles of incidence of the model. The conditions under which fluctuations occur in the whistle are determined and the fields of the mean flow and fluctuations in the shock layer on the plate are obtained. In the experiments performed in the T-327A hypersonic nitrogen wind tunnel of the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences the dependence of the pressure fluctuations on the plate surface on the angle of attack of the model are obtained. The calculated and measured results are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.