Abstract

The facile and low-cost fabrication of free-standing magnetic catalysts with high catalytic efficiency, rapid reaction rate and excellent recoverability has been pursued for various catalysis applications, e.g., treating aqueous organic 4-nitrophenol pollutants. Here, we design and fabricate a free-standing nickel-coated hyperporous polymer foam (Ni-HPF) with adjustable shapes and sizes, hierarchical multiscale porous structures, abundant catalytical interfaces and excellent super-paramagnetic properties. Due to the synergistical effect of abundant binding sites and highly catalytic reduction, the as-prepared Ni-HPF has demonstrated high conversion efficiency (> 90% at extremely low concentration of 7.5 μM) and rapid reaction rate (2.58 × 10−3 s−1) for the reduction of organic 4-nitrophenol. Moreover, the magnetic catalyst also holds excellent recoverability (>80% conversion rate even after 1000 cycles) and good reproducibility (>80% conversion rate after 3 months of storage). As such, this work with novel material design and working principle could provide a wide range of potential applications in water purification, chemical catalysis and energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.