Abstract
We aimed at investigating the mechanisms linking hyperlipidemia (HL) with dysfunctional HDL and its main antioxidant enzyme, paraoxonase1 (PON1). PON1 expression and activity was determined in the small intestine, liver, and sera of normal and HL hamsters and associated with the ER stress (ERS) and the development of aortic valve lesions. Male Golden Syrian hamsters were fed standard chow (N) or standard diet with 3% cholesterol and 15% butter for 16 weeks. All hamsters on fat diet developed HL, 50% also hyperglycemia (HLHG) and a fourfold increased homeostasis model assessment of insuline resistance. PON1 expression was reduced in the small intestine and liver (N > HL > HLHG) along with the increased extent of ERS, oxidized lipids, and decreased expression of liver X receptors beta (LXRβ) in the small intestine, peroxisome proliferator-activated receptor-γ (PPARγ) in the liver, and of the glucose transporter 4 in the myocardium. Serum PON1 levels decreased along with the increase of oxidized LDL and lesion areas of the aortic valves (N > HL > HLHG). The fat diet activates the ERS and oxidative stress, decreases LXRβ, PPARγ, and PON1 in the small intestine, liver, and sera of all HL animals, in parallel with the appearance of atherosclerotic lesions in the aortic valves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.