Abstract
Type 1 diabetic patients have hyperketonemia, elevated levels of pro-inflammatory and oxidative stress markers, and a higher incidence of vascular disease. This study examines the hypothesis that hyperketonemia increases reactive oxygen species (ROS) and is in part responsible for increased expression of adhesion molecules in monocytes. THP-1 monocytes were treated with acetoacetate (AA) or β-hydroxybutyrate (BHB) (0-10mmol/L) for 24h. Results show that AA, but not BHB, increases ROS production in monocytes. Pretreatment of monocytes with N-acetylcysteine (NAC) inhibited AA-induced ROS production. AA treatment induced upregulation of LFA-1 and pretreatment of monocytes with NAC or an inhibitor to p38 MAPK inhibited this upregulation in monocytes. This suggests that physiological concentrations of AA can contribute to increased ROS and activation of p38 MAPK, which may be responsible for AA-induced upregulation of LFA-1 in monocytes. Thus, hyperketonemia contributes to the risk for cardiovascular disease in type 1 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.