Abstract

We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn5. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H||[100] are consistent with magnetic order with wavevector Q=pi((1+delta)/a,1/a,1/c) and Ce moments ordered antiferromagnetically along the [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15 mu_B along [001] and Q_n=pi((1+delta)/a,(1+delta)/a,1/c) with incommensuration delta = 0.12 for field H||[1-10]. Using these parameters, we find that a hyperfine field with dipolar contribution is consistent with findings from both experiments. We speculate that the B phase of CeCoIn5 represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.