Abstract
Xenon based biosensors have the potential to detect and localize biomarkers associated with a wide variety of diseases. The development and nuclear magnetic resonance (NMR) characterization of cage molecules which encapsulate hyperpolarized xenon is imperative for the development of these xenon biosensors. We acquired (129) Xe NMR spectra, and magnetic resonance images and a HyperCEST saturation map of cucurbit[6]uril (CB6) in whole bovine blood. We observed a mean HyperCEST depletion of 84% (n = 5) at a concentration of 5 mM and 74% at 2.5 mM. Additionally, we collected these data using a pulsed HyperCEST saturation pre-pulse train with a SAR of 0.025 W/kg which will minimize any potential RF heating in animal or human tissue. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.