Abstract
We use our new type of bounded locally homeomorphic quasiregular mappings in the unit 3-ball to address long standing problems for such mappings, including the Vuorinen injectivity problem. The construction of such mappings comes from our construction of non-trivial compact 4-dimensional cobordisms M with symmetric boundary components and whose interiors have complete 4-dimensional real hyperbolic structures. Such bounded locally homeomorphic quasiregular mappings are defined in the unit 3-ball B3 ⊂ ℝ3 as mappings equivariant with the standard conformal action of uniform hyperbolic lattices Γ ⊂ Isom H3 in the unit 3-ball and with its discrete representation G = ρ(Γ) ⊂ Isom H4. Here, G is the fundamental group of our non-trivial hyperbolic 4-cobordism M = (H4 ∪ Ω(G))/G, and the kernel of the homomorphism ρ: Γ → G is a free group F3 on three generators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.