Abstract

Short-time existence and uniqueness results in Sobolev spaces are proved for Hele-Shaw flow with kinetic undercooling and for Stokes flow without surface tension. In both cases, the flow is driven by arbitrarily distributed sources and sinks in the interior of the liquid domain. The proofs are based on a general approach consisting of the reformulation of the problem as a Cauchy problem for a nonlinear, nonlocal evolution equation on the unit sphere, quasilinearization by equivariance, investigation of the linearization, and Galerkin approximations. In the situation discussed here, the linearized evolution operator is a first-order differential operator, and thus the evolution equation is of hyperbolic type. Finally, a brief survey of the properties of the evolution equations that arise from Hele-Shaw flow and Stokes flow with and without regularization is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.