Abstract

Recently, hyperspectral datasets recognized a great interest in mineral exploration studies due to their high accuracy in detecting and mapping hydrothermal alteration minerals. Remote and mountainous regions are hardly accessible by geologists, while the spectral richness of imaging spectroscopy could provide detailed information about geology/mineralogy without having a direct contact with the ground surface. The Kerdous inlier in the Anti-Atlas belt of Morocco is recognized by several occurrences of Cu, Pb, Zn Au, Ag, and Mn mineral deposits. This study is carried out in Eastern Kerdous where the abandoned Idikel mine occurs in order to perform a high-resolution mineral potential map using Gamma-Fuzzy logic approach with twenty HyMap-derived layers. The HyMap-based thematic layers were generated using Directed Principal Component Analysis (DPCA), Relative Absorption Band Depth (RBD), and the Mixture Tuned Matched Filtering (MTMF) for pixel/sub-pixel mineral mapping. The hydrothermally altered regions within the study area reveal several Minerals/Mineral mixtures of hematite, illite, kaolinite, montmorillonite, muscovite, topaz, dolomite, and pyrophyllite. Then, the line density map extracted automatically from the HyMap data image was also integrated. The findings of the image processing were validated using field investigation, petrographic, and XRD analysis. This study demonstrates the great potential of the present research methodology and HyMap as a tool for mineral exploitation in similar areas in Morocco's western Anti-Atlas belt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.