Abstract

The main objective of this work is to present the impact of atmospheric pressure gradient on the hygrothermal transfers in porous material. In this way, a mathematical model described by driving forces of temperature, moisture content and total pressure gradient has been addressed. The non-linear partial differential equations are defined through the balance equations of mass and energy development. After that, a numerical implementation focused on the wood drying behavior is treated for one dimensional Fourier boundary conditions. In order to evaluate the pressure sensitivity, temperature and moisture content profiles are presented and compared to the ones obtained by the classical models [15,16]. Results show that the atmospheric pressure gradient may cause significant influence on the hygrothermal behavior of the porous materials especially for wood process. A significant effect, up to 15%, on moisture content profile distribution is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.