Abstract

AbstractHydroxylation by solar wind protons has been simulated in our laboratory on Apollo 17 lunar sample 78421, a very mature regolith sample that is rich with agglutinates (68%). The goal of this study was to determine the rate of hydroxyl formation and their thermal stability by monitoring changes in the SiOH (hydroxyl) stretching band near 3 μm using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). A 2 keV H2+ ion beam was used to simulate proton implantation on 78421 and on a crushed fused silica sample. We find that the OH band does not change unless the samples have been annealed in vacuum prior to irradiation. Qualitatively, the OH bands for the fused silica and 78421 are very different. The OH band for fused silica is centered at 2.74 μm and is relatively sharp ranging from 2.67 to 3.1 μm at full width at half maximum (FWHM), while the OH band for 78421 is centered at 3.0 μm and ranges from 2.74 to 3.37 μm at FWHM. The increase in wavelength and broadened nature of the OH band in 78421 may be associated with the OH’s proximity to surface defects and/or lattice vacancies. The lack of the H2O bending mode at 6.1 μm indicates that any adsorbed terrestrial H2O is below our detection limit, and therefore the H2O stretching mode at 2.9 μm is not significantly contributing to the broad 3 μm OH band and implies that proton implantation by itself does not lead to water formation. To simulate the maximum dayside temperature on the lunar surface, the lunar sample was heated after proton irradiation. The proton induced OH concentration was reduced by as much as 25% after heating to 400 K (127°C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.