Abstract

Catalyzed H2O2 propagations (CHP) is characterized by the most robust reactivity of any of the in situ chemical oxidation (ISCO) technologies because it generates the strong oxidant hydroxyl radical along with nucleophiles + reductants, such as superoxide radical. The most common groundwater contaminants, trichloroethylene (TCE) and perchloroethylene (PCE), were used as model contaminants in evaluating the effect of hydrogen peroxide (H2O2) dosage on contaminant destruction kinetics. Both TCE and PCE degradation rates increased with H2O2 dosages up to 0.1 M, and then decreased with higher H2O2 dosages. Parallel reactions conducted with the addition of the hydroxyl radical scavenger 2-propanol and the hydroxyl radical-specific probe nitrobenzene confirmed that hydroxyl radical is primarily responsible for TCE and PCE degradation; however, 5–20% of their degradation was attributed to a non-hydroxyl radical mechanism. Reactions conducted with the superoxide probe tetranitromethane showed that superoxide generation rates increased with increasing H2O2 doses. These results were confirmed by electron spin resonance spectroscopy. Therefore, the non-hydroxyl radical pathway for TCE and PCE degradation at H2O2 ≥0.5 M was likely via nucleophilic attack by superoxide. The results of this research demonstrate that contaminants present in the aqueous phase that are reactive with hydroxyl radical require only low doses of H2O2 (≤0.1 M), but subsurface systems contaminated with species not reactive with hydroxyl radical (e.g., carbon tetrachloride) require H2O2 concentrations ≥0.5 M.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.