Abstract

The separation of Lns(III) from radioactive Ans(III) in high-level liquid waste remains a formidable hydrometallurgical challenge. Water-soluble ligands are believed to be new frontiers in the search of efficient Lns/Ans separation ligands to close the nuclear fuel cycles and dealing with current existing nuclear waste. Currently, the development of hydrophilic ligands far lags behind their lipophilic counterparts due to their complicated synthetic procedures, inferior extraction performances, and acid tolerances. In this paper, we have showed a series of hydroxyl-group functionalized phenanthroline diimides were efficient masking agents for Am(III)/Eu(III) separation under high acidity (˃ 1 M HNO3). Record high SFEu(III)/Am(III) of 162 and 264 were observed for Phen-2DIC2OH and Phen-2DIC4OH in 1.25 M HNO3 which represents the best Eu(III)/Am(III) separation performance at this acidity. UV–vis absorption, NMR and TRLFS titrations were conducted to elucidate the predominant of 1:1 ligand/metal species under extraction conditions. X-ray data of both the ligand and Eu(III) complex together with DFT calculations revealed the superior extraction performances and selectivities. The current reported hydrophilic ligands were easy to prepare and readily to scale-up, acid tolerant and highly efficient, together with their CHON-compatible nature make them promising candidates in the development of advanced separation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.