Abstract

Bone is a natural biomaterial. It behaves favorable strength, stiffness and fracture toughness, which are closely related to its eximious microstructure. Scanning Electron Microscope (SEM) observation on a shinbone showed that the bone is a bioceramic composite consisting of laminated hydroxyapatite and collagen matrix. The hydroxyapatite layers are parallel with the surface of the bone and consist of long and thin hydroxyapatite sheets. The observation also showed that the hydroxyapatite sheets in different hydroxyapatite layers also parallel with each other, which composes a hydroxyapatite-sheet parallel microstructure. The maximum pullout energy of the parallel microstructure was investigated based on its representative model. It was shown that the long and thin shape of the hydroxyapatite sheets in the parallel microstructure is profitable to increase the maximum pullout energy and enhance the fracture toughness of the bone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.