Abstract

In principle, three-dimensional (3D) osteoconductive grafts with a proper chemical composition, high total porosity, and fully interconnected pores are suitable carriers to provide a proper substrate for in vivo neobone tissue ingrowth. However, most porous materials carry some intrinsic limits because of their internal structure (i.e., limited macroporosity and small pore interconnection size), representing a physical constraint for a massive blood afflux and bone ingrowth and therefore for generating effective osteopermissive grafts. We therefore hypothesized that an unconventional scaffold, based on an "open-structure" concept, should not pose any limit to vascularization of grafts and consequently to the amount of bone growth. Starting from this hypothesis, we have designed and developed a 3D osteoconductive polymeric-based wide-net mesh. Polymer fibers, joining hydroxyapatite beads, were coated with a thin layer of calcium phosphate (Ca-P), coupling the osteoconductivity properties of Ca-P with the handness and bulk properties of polymers. This completely open 3D scaffold prototype was tested both in vitro and in vivo, displaying a promising in vivo blood vessel invasion and bone-forming efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.