Abstract

It is unexpectedly found that, the in-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) under a moderate temperature (85°C) can effectively trigger the reduction of GO, which needs neither extra reducing agents nor high-temperature thermal treatment. The transmission electron microscope (TEM) experiment demonstrates that the rod-like HAP particles are well attached on the surface of reduced GO (rGO) to form the composite. Electrochemical sensing assays show that the synthesized HAP-rGO nanocomposite presents excellent electrocatalytic capacity for the oxidation of a toxic chemical of hydrazine. When the HAP-rGO modified electrode was utilized as an electrochemical sensor for hydrazine detection, outstanding performances in the indexes of low fabrication cost, short response time (~2s), wide linear range, low detection limit (0.43μM), and good selectivity were achieved. The developed sensor also shows satisfactory results for the detection of hydrazine in real industrial wastewater sample were achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.