Abstract

Hollow Li₄Ti5O12 nanotubes were synthesized by stirring in a heated oil bath using P25 as titanium source and lithium hydroxide as lithium source. The as-prepared samples displayed a nanotube structure, with diameter of about 20~50 nm and length of 0.4 μm. The specific surface area of as-prepared samples reached 153.2 m²g-1. It is demonstrated that the Li₄Ti5O12 nanotubes with improved performance can be obtained by hollow structure and high specific surface area. In consequence, it delivered a high reversible initial discharge capacity of 174.2 mAh g-1 at 0.5 C rate. A stable capacity of 170.9 mAh g-1 was delivered when the rate was reduced back to 0.5 C, suggesting good structural stability of the nanocable, high reversibility even after high rate charge- discharge, and good cycle stability. In addition, a capacity of 134.9 mAh g-1 and 98 mAhg-1 could be retained at a high rate of 5 C and 10 C, indicating excellent rate performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.