Abstract

Uniform tetragonal-shaped SnO2 nanorods and their urchin-like clusters were successfully synthesized via a template-free hydrothermal process. The resulting nanorods were characterized by power X-ray diffraction (PXRD), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), infrared absorption spectra (IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG) and ultraviolet–visible (UV–vis) absorption spectra. The influence of precursor, solvent, hydrothermal temperature and treatment time on the formation of SnO2 nanostructures was investigated. Moreover, the surface properties of SnO2 nanorods were studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.