Abstract

A series of mesoporous CeZrTiOx catalysts were prepared by a facile hydrothermal method. Compared with CeTiOx catalysts synthesized under the same conditions, the catalytic activity and anti-SO2 performance of the Ce1Zr1TiOx catalyst are greatly improved, and at the gas hourly space velocity (GHSV) of 60 000 h-1, the NOx removal efficiency is maintained at 90% in the temperature range of 290-500 °C. The catalytic effect of ZrO2 on the Ce-Ti catalyst NH3-SCR activity was elucidated through a series of characterizations. The results revealed that the doping of Zr could significantly improve and optimize the structure of Ce-Ti catalysts. At the same time, due to the doping of Zr, the synergistic effect between Ce and Zr in the CeZrTiOx catalyst can effectively increase oxygen mobility, total acid content, and surface adsorbed oxygen species and lead to a larger pore volume. In addition, the introduction of ZrO2 made the transformation of Ce4+ into Ce3+ more obvious, and the 2Ce4+ + Zr2+ ↔ 2Ce3+ + Zr4+ reaction greatly improved the reducibility of Ce1Zr1TiOx. Among them, the improvement of SCR performance and H2O/SO2 tolerance is due to the electronic interaction between Zr and Ce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.