Abstract

In this paper, we report a facile and versatile modified hydrothermal method for synthesis of three-dimensional (3D) hierarchical flower-like MoSe2 microspheres using selenium powders and sodium molybdate as raw materials. The as-prepared MoSe2 was investigated for application as an adsorbent for the removal of dye contaminants from water. Power X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS) and N2 adsorption-desorption analysis were carried out to study the microstructure of the as-synthesized product. A possible growth mechanism of MoSe2 flower-like microspheres was preliminarily proposed on the basis of observation of a time-dependent morphology evolution process. Moreover, the MoSe2 sample exhibited good adsorption properties, with maximum adsorption capacity of 36.91mg/g for methyl orange. The adsorption process of methyl orange on 3D hierarchical flower-like MoSe2 microspheres was systematically investigated, which was found to obey the pseudo-second-order rate equation and Langmuir adsorption model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.