Abstract

ZnO nanostructures with four different morphologies (nanoparticles, nanorods, mixtures of nanoparticles and nanorods as well as nanoflowers aggregated by nanoparticles and nanorods) were synthesized successfully via simple hydrothermal method. The crystalline structures of ZnO samples were characterized by the X-ray diffraction and the microscopic morphologies of ZnO samples were observed by the scanning electron microscopy. Besides, the probable growth mechanisms of ZnO nanostructures with four different morphologies were proposed. We found that Hexamethylenetetramine (HMT), the halogen ion F− and the concentration of OH− played a significant role in the morphology of ZnO nanocrystalline. In addition, further gas sensitivity measurements revealed that all the as-synthesized ZnO performed gas-sensing properties towards the ethanol gas with very low concentration. Furthermore, the gas-sensing properties of nanoflowers were much more excellent than the other three low-dimension nanostructures, which indicated that the splendid gas-sensing properties of ZnO nanoflowers were contributed to their large specific area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.