Abstract

Ground deformation in volcanic areas induced by geothermal fluid circulation can reveal useful information about the dynamical processes occurring in the subsurface hydrothermal system. In the present work, we investigate tiltmeter time-series recorded at Aso Volcano during 2011–2016, a time interval during which different phases of volcanic activity occurred. We performed polarization analysis of the data and identified peculiar long-lasting (hours) transients, defined as Very-Long-period Tilt Pulses. The transients were further characterized in terms of waveform cross-correlation, particle tilt pattern, energy, and time distributions. The analyses indicate that such signals, which appear like deflation–inflation (DI) events, are associated with a Poissonian process whose underlying dynamics evolves over time always driven by a Poissonian mechanism. The obtained results have been interpreted in light of the available geophysical, geochemical and volcanological information. In this framework, the Very-Long-period Tilt Pulses may be ascribed to the depressurization/pressurization of the shallow hydrothermal system according to a fault-valve mechanism, which was active with different efficiency throughout eruptive and inter-eruptive phases.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.