Abstract

The aim of this work is to build a model able to simulate a hydrothermal electric power market based on simple bids to a power exchange. The model studies the behavior of different market agents in a short-term horizon and delivers information about spot prices, use of water, and other relevant variables. Initially, a thermoelectric market is simulated through a static model based on Cournot concepts. The addition of hydroelectric power stations and time dependencies is made later, using a dynamic programming algorithm to build a dynamic model. In each stage and state of the dynamic programming, a Nash-Cournot equilibrium is determined to assess the behavior of the thermoelectric power stations (static model). Different strategies that firms can follow and the consequences of each one of them are analyzed. Market power mitigation effects of physical and financial bilateral contracts are also investigated. A case study with data on the Chilean power system is presented and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.