Abstract

Greatly secure semiconducting materials of Ag doped ZrO2 (AZO) nanoparticles have been prepared by the use of hydrothermal and precipitation methods. Photocatalytic nanoparticles were characterized by UV-DRS, XRD, FT-IR and HR-SEM, HR-TEM, PL and CV techniques. Admirable improvement in the direct band gap of 4.61–4.58 eV was achieved as a result of doping. XRD diffraction pattern established the arrangement of monoclinic and tetragonal phase. The crystallite size and specific surface area were resoluted as 37.51 nm and 50.44 g/cm3. In addition, microscopic observation shows the Ag doped ZrO2 has achieved agglomeration and the particle diameter range between less than 100 nm of 5.81 and 7.65 1/nm. Luminescence and cyclic voltammetry are given additional supports towards optoelectronic characterization of Ag doped zirconium dioxide nanomaterials. The obtained ZO/AZO nanoparticles persist towards cationic dye of Rh6G at outfitted parameters of pH medium 9 implemented effectively in UV and solar light. The photodegradation of Rh6G dye is well described by pseudo-first order kinetics and high quantum yield. The Langmuir–Hinshel wood mechanism of photocatalytic effect of Ag doped Zirconium oxide nanomaterial have been discussed sucessfully and COD analysis was investigated. In this study, AZO material has to be proficient and potential remediated for contaminated water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.