Abstract
A hydrothermal fabrication of ZnO nanorod-based grating patterns on Si substrates is reported. The arrays of optical fiber cores were manually assembled as templates with nominal pitches of 250μm and 375μm. The profiles of the templates and the grating patterns were extracted and quantitatively characterized based on micrographs of scanning electron microscopy (SEM) and Image Processing Toolbox of MATLAB. The errors of the actual pitches and the parallelism demonstrate that the process capability of manually assembling the optical fiber cores can meet the quality requirement of the templates. The critical dimensions (CDs) show that the size of the trough formed by the template and the Si substrate determines the location of the grating pattern. The characteristic parameters, including line edge roughness (LER), line width roughness (LWR), skewness (Sk), kurtosis (Ku), and correlation length (ζ), exhibit that the three-phase contact lines among the trapped air bubble, ZnO seed solution, and Si substrate (or the optical fiber core) decide the form of the grating pattern. The research found that larger nominal pitch of the template resulted in larger size of the trough which further led to less CD, and higher hydrophilicity of the Si surfaces resulted in smoother profiles whilst lower hydrophilicity of the optical fiber core surfaces led to rougher ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.