Abstract

Anthropogenic CO2 can be converted to alternative fuels and value-added products by electrocatalytic routes. Copper-based catalysts are found to be the star materials for obtaining longer-chain carbon compounds beyond 2e- products. Herein, we report a facile hydrothermal fabrication of a highly robust electrocatalyst: in-situ grown heterostructures of plate-like CuO-Cu2 O on carbon black. Simultaneous synthesis of copper-carbon catalysts with varied amounts of copper was conducted to determine the optimum blend. It is observed that the optimum ratio and structure have aided in achieving the state of art faradaic efficiency for ethylene >45 % at -1.6 V vs. RHE at industrially relevant high current densities over 160 to 200 mA ⋅ cm-2 . It is understood that the in-situ modification of CuO to Cu2 O during the electrolysis is the driving force for the highly selective conversion of CO2 to ethylene through the *CO intermediates at the onset potentials followed by C-C coupling. The excellent distribution of Cu-based platelets on the carbon structure enables rapid electron transfer and enhanced catalytic efficiency. It is inferred that choosing the right composition of the catalyst by tuning the catalyst layer over the gas diffusion electrode can substantially affect the product selectivity and promote reaching the potential industrial scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.