Abstract

The effects of reaction temperature (150–300 °C), chemical composition of the starting cerium salt (cerium nitrate and cerium chloride), and doping with trivalent cations (Sc3+ and Y3+) on the coarsening of CeO2 particles in dilute suspensions under hydrothermal conditions were investigated. The particle size was measured by x-ray line broadening and by transmission electron microscopy. The particle coarsening kinetics followed a parabolic law, indicating that the interfacial reaction (dissolution) was the rate-controlling step. Furthermore, the particle size distribution data can be well-described by the Lifshitz–Slyozov–Wagner theory of Ostwald ripening controlled by the interfacial reaction. Doping with 6 at.% Y3+ produced a significant reduction in the coarsening rate but almost no change in the activation energy. At the same concentration, Sc3+ was more effective than Y3+ in reducing the coarsening rate. Particles synthesized from a starting solution of cerium(III) chloride coarsened at a markedly slower rate than that for particles synthesized from cerium(III) nitrate. The mechanisms controlling the coarsening of the particles are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.