Abstract

This paper investigates natural convection and entropy generation of the Nano-Encapsulated phase change materials (NEPCMs) in an inclined L-shaped cavity. The NEPCMs are made up of core and shell in which the PCMs are the core section that are capsulated in Nano-shells. These NEPCM particles go through phase change from solid to the liquid while absorbing the heat and release it when their phase changes back to solid. The Navier-Stokes equations are solved by Finite Element Method (FEM) to simulate the behavior of NEPCMs under a set of defined boundary conditions. The effect of Rayleigh number (10 4 -10 6 ), micro-rotation parameter (0–2), Nano particle's concentration (0.01–0.05), Stefan number (0.1–0.5), and non-dimensional fusion temperature (0.1–0.3) on the Nusselt number and entropy generation of the fluid flow is also analyzed. The results reveal that the Stefan number, micro-rotation parameter, and non-dimensional fusion temperature have a negative impact on NC heat transfer of NEPCMs and reduce the Nu avg up to 25%, 42%, and 15% respectively. Conversely, the nanoparticle concentration enhances the Nu avg up to 36%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.