Abstract
In the endoplasmic reticulum (ER), nascent glycoproteins that have not acquired the native conformation are either repaired or sorted for degradation by specific quality-control systems composed by various proteins. Among them, UDP-glucose:glycoprotein glucosyltransferase (UGGT) serves as a folding sensor in the ER. However, the molecular mechanism of its recognition remains obscure. This study used pseudo-misfolded glycoproteins, comprising a modified dihydrofolate reductase with artificial pyrene-cysteine moiety on the protein surface (pDHFR) and Man9 GlcNAc2 -methotrexate (M9-MTX). All five M9-MTX/pDHFR complexes, with a pyrene group at different positions, were found to be good substrates of UGGT, irrespective of the site of pyrene modification. These results suggest UGGT's mode of substrate recognition is fuzzy, thus allowing various glycoproteins to be accommodated in the folding cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.