Abstract

Considering the nonideal metabolic stability of the difluoro-biphenyl-diarylpyrimidine lead compound 4, a series of novel alkylated difluoro-biphenyl-diarylpyrimidines were designed and synthesized based on their structure. Introducing alkyl or substituted alkyl groups on the linker region to block the potential metabolic sensitive sites generated 22 derivatives. Among them, compound 12a with an N-methyl group displayed excellent anti-HIV-1 activity and selectivity. The methyl group was hopped to the central pyrimidine to occupy the small linker region and maintain the water-mediated hydrogen bond observed in the binding of compound 4 with RT. The resulting compound 16y exhibited an improved anti-HIV-1 activity, much lower cytotoxicity, and nanomolar activity toward multiple mutants. In addition, 16y has a better stability in human liver microsomes than 4. Moreover, no apparent in vivo acute toxicity was observed in 16y-treated female, especially pregnant mice. This series of alkylated compounds with highly potency and safety represent a promising lead template for future discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.