Abstract

Here we report control of iron oxide and palladium nanoparticle (NP) formation via stabilization with polyphenylenepyridyl dendrons of the second and third generations with dodecyl periphery. These nanomaterials are developed as magnetically recoverable catalysts. To accurately assess the influence of the dodecyl exterior for the same dendron generation, we also designed a second generation dendron with partial dodecyl periphery. For all dendrons studied, the multicore iron oxide mesocrystals were formed, the sizes and morphology of which were controlled by the dendron generation. Analysis of the static and dynamic magnetic properties, in combination with transmission electron microscopy observations, demonstrate that magnetism is sensitive on the structure-directing capabilities of the type of the dendron which was employed for the mesocrystal stabilization. Close proximity of single cores in such multicore mesocrystals promotes the coupling of the neighboring magnetic moments, thus boosting their magnet...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.