Abstract

The delivery of drugs is a great challenge, since most of active pharmaceutical ingredients developed today are hydrophobic and poorly water soluble. From this perspective, drug encapsulation on biodegradable and biocompatible polymers can surpass this problem. Poly(γ-glutamic acid) (PGGA), a bioedible and biocompatible polymer has been chosen for this purpose. Carboxylic side groups of PGGA have been partially esterified with 4-phenyl-butyl bromide, producing a series of aliphatic-aromatic ester derivatives with different hydrophilic-lipophilic balances. Using nanoprecipitation or emulsion/evaporation methods, these copolymers were self-assembled in a water solution, forming nanoparticles with average diameters between 89 and 374 nm and zeta potential values between -13.1 and -49.5 mV. The hydrophobic core containing 4-phenyl-butyl side groups was used for the encapsulation of an anticancer drug, such as Doxorubicin (DOX). The highest encapsulation efficiency was reached for a copolymer derived from PGGA, with a 46 mol% degree of esterification. Drug release studies carried out for 5 days at different pHs (4.2 and 7.4) indicated that DOX was released faster at pH 4.2, revealing the potential of these nanoparticles as chemotherapy agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.