Abstract

How tightly packed is the hydrophobic core of a folding transition state structure? We have addressed this question by characterizing the effects on folding kinetics of > 40 substitutions of both large and small amino acids in the hydrophobic core of the Fyn SH3 domain. Our results show that residues at three positions, which we designate as the 'core folding nucleus', are tightly packed in the transition state, and substitutions at these positions cause the largest changes in the folding rate. The other six positions examined appear to be loosely packed; thus, substitutions at these positions with larger hydrophobic residues generally accelerate folding, presumably by increasing the rate of nonspecific hydrophobic collapse. Surprisingly, the folding rate can be greatly accelerated by residues that also significantly destabilize the native state structure. Furthermore, mutants with identical thermodynamic stability can differ by up to 55-fold in their folding rates. These results highlight the importance of hydrophobic core composition, as opposed to only topology, in determining the folding rate of a protein. They also provide a new explanation for the 'abnormal' phi-values observed in many protein folding kinetics studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.