Abstract
High-intensity focused ultrasound (HIFU) has been investigated as a remote and controlled activation method to noninvasively actuate shape memory polymers (SMPs), specifically in biomedical applications. However, the effects of aqueous environment on shape recoverability of in vivo HIFU-actuated SMPs have yet to be explored. HIFU directs sound waves into a millimeter-sized tightly focused region. In this study, the response of hydrophilic and hydrophobic photopolymerized thermoset SMP networks under HIFU activation in an aqueous environment was investigated. Acrylate-based SMP networks were copolymerized in specific ratios to produce networks with independently adjusted glass transition temperatures ranging from 40 to 80 °C and two distinct water uptake behaviors. The results link the polymer swelling behavior to shape recoverability in various acoustic fields. The presence of absorbed water molecules enhances the performance of SMPs in terms of their shape memory capabilities when activated by HIFU. Overall, understanding the interplay between water uptake and HIFU-actuated shape recovery is essential for optimizing the performance of SMPs in aqueous environments and advancing their use in various medical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.