Abstract
The interaction between hydroperoxides, cytochrome P450 and 8-anilino-1-naphthalenesulfonic acid (ANS) has been investigated. The addition of ANS to the cytochrome P450 solution did not effect the P450 Soret absorption peak or the reduced CO difference spectrum, suggesting that ANS may not bind to P450 home directly. H2O2 or CuOOH alone did not effect ANS fluorescence and absorption spectra indicating that no detectable reaction occurs between hydroperoxide and ANS in the absence of P450. The reconstituted system of cytochrome P450, P450 reductase, lipid and NADPH did not mediate ANS metabolism. In the presence of P450, the addition of either H2O2 or CuOOH, however, leads to a decrease in ANS absorption around 258 nm and 350 nm indicating possible destruction of ANS. ANS destruction was confirmed with the disappearance of the ANS elution peak in the reverse phase HPLC profiles and with the changes in P450-bound ANS fluorescence intensity and the shift of lambda max of ANS. Moreover, a very sensitive method to detect trace fluorescent products of ANS by thin layer chromatography has been developed based on the fact that ANS fluorescence is enhanced more than 1000-fold by the organic solvent butanol. A UV-sensitive fluorescent product was detected on thin layer chromatography profiles of the reaction mixtures. P450 was also observed to be modified by a fluorescent derivative of ANS, when the fluorescence was enhanced by butanol. These results also show that an organic compound which can not be metabolized by the reconstituted system of cytochrome P450 and NADPH-P450 reductase is metabolized by the reconstituted system of P450 and hydroperoxide, suggesting the activities of these two systems may not be completely comparable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.