Abstract

The study of water resources at watershed scale is widely adopted as approach to manage, assess and simulate these important natural resources. The development of remote sensing and GIS techniques has allowed the use of spatially and physically based hydrologic models to simulate as simply and realistically as possible the functioning of watershed systems. Indeed, the major constraint that has hindered the expansion use of these tools was the unavailability or scarcity of data especially in the developing countries. In this context, the objective of this study is to model the hydrology in the Bouregreg basin, located at the north-central of Morocco, using the Soil and Water Assessment Tool (SWAT) in order to understand and determine the different watershed hydrological processes. Thus, it aims to simulate the stream flow, establish the water balance and estimate the monthly volume inflow to SMBA dam situated at the basin outlet. The ArcSWAT interface implemented in the ArcGIS software was used to delineate the basin and its sub-components, combine the data layers and edit the model database. The model parameters were analyzed, ranked and adjusted for hydrologic modeling purposes using daily temporal data series. They were calibrated using an auto-calibration method based on a Shuffled Complex Evolution Algorithm from 1989 to 1997 and validated from 1998 to 2005. Based on statistical indicators, the evaluation indicates that SWAT model had a good performance for both calibration and validation periods in Bouregreg Watershed. In fact, the model showed a good correlation between the observed and simulated monthly average river discharge with R² and Nash coefficient of about 0.8. The water balance components were correctly estimated and the SMBA dam inflow was successfully reproduced with R² of 0.9. These results revealed that if properly calibrated, SWAT model can be used efficiently in semi-arid regions to support water management policies.

Highlights

  • The water is the most important natural resource especially in the arid or semi-arid zones that face high population growth, scarcity of freshwater, irregularity of rainfall, excessive land use change and increasing vulnerability to risks such of drought, desertification and pollution

  • The study of water resources at watershed scale is widely adopted as approach to manage, assess and simulate these important natural resources

  • The objective of this study is to model the hydrology in the Bouregreg basin, located at the north-central of Morocco, using the Soil and Water Assessment Tool (SWAT) in order to understand and determine the different watershed hydrological processes

Read more

Summary

Introduction

The water is the most important natural resource especially in the arid or semi-arid zones that face high population growth, scarcity of freshwater, irregularity of rainfall, excessive land use change and increasing vulnerability to risks such of drought, desertification and pollution. Managing water resources is mostly required at watershed scale [1] given that is the basic hydrologic unit where can be studied the heterogeneity and complexity of processes and interactions linking land surface, climatic factors and human activities. This adopted approach for assessing water quantity and quality was expressed as various hydrologic models and tools that try to simulate and predict the watershed response at different spatial and time scales. Many models were developed for watershed hydrology [2] but the availability of temporally and spatially data was the main constraint hindering the implementation of these models especially in developing countries. The development of remote sensing techniques and Geographic Information System (GIS) capabilities

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.