Abstract

AbstractSoil is the largest terrestrial carbon (C) reservoir and a large potential source or sink of atmospheric CO₂. Soil C models have usually focused on refining representations of microbe‐mediated C turnover, whereas lateral hydrologic C fluxes have largely been ignored at regional and global scales. Here, we provide large‐scale estimates of hydrologic export of soil organic carbon (SOC) and its effects on bulk soil C turnover rates. Hydrologic export of SOC ranged from nearly 0 to 12 g C m−2yr−1 amongst catchments across the conterminous United States, and total export across this region was 14 (95% CI 4‐41) Tg C/yr. The proportion of soil C turnover attributed to hydrologic export ranged from <1% to 20%, and averaged 0.97% (weighted by catchment area; 95% CI 0.3%–2.6%), with the lowest values in arid catchments. Ignoring hydrologic export in C cycle models might lead to overestimation of SOC stocks by 0.3–2.6 Pg C for the conterminous United States. High uncertainty in hydrologic C export fluxes and potentially substantial effects on soil C turnover illustrate the need for research aimed at improving our mechanistic understanding of the processes regulating hydrologic C export.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.