Abstract

We present a computational method for commodity hardware-based clinical cardiovascular diagnosis based on accurate simulation of cardiovascular blood flow. Our approach leverages the flexibility of the Lattice Boltzmann method to implementation on high-performance, commodity hardware, such as Graphical Processing Units. We developed the procedure for the analysis of real-life cardiovascular blood flow case studies, namely, anatomic data acquisition, geometry and mesh generation, flow simulation and data analysis and visualization. We demonstrate the usefulness of our computational tool through a set of large-scale simulations of the flow patterns associated with the arterial tree of a patient which involves two hundred million computational cells. The simulations show evidence of a very rich and heterogeneous endothelial shear stress pattern (ESS), a quantity of recognized key relevance to the localization and progression of major cardiovascular diseases, such as atherosclerosis, and set the stage for future studies involving pulsatile flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.