Abstract

AbstractCyclopentanone (CPO) and cyclopentanol (CPL), derived from renewable biomass resource hemicellulose, are considered sustainable chemicals that can substitute fossil‐based products, which could be obtained through the hydrogenation‐rearrangement reaction of furfural (FFA). However, the inevitable condensation reactions of FFA and furfuryl alcohol (FA) in aqueous solutions generate humins and result in carbon loss, limiting the industrial application of this process. Herein, a series of Cu‐based catalysts were synthesized using the reverse co‐precipitation method with various metal promoters and applied in the FFA hydrogenation‐rearrangement reaction. The highest yield of 97.1 % CPO/CPL achieved in a typical reaction condition at 200 °C, 4 MPa, in 20 wt % isopropanol‐water mixed solvent over CuZnZr catalyst and the recyclability test confirmed that the catalyst had excellent stability. Experimental studies and characterizations showed that the enhanced performance could be attributed to the adequate Lewis acid sites, regulated through the synergistic interaction between Cu, Zn, and Zr compounds. The simultaneous introduction of Zn and Zr promotes the Cu reduction, and results in more dispersed Cu0 and Cu+, providing an ample and reliable active site. This study outlines a viable method for the catalyst designing and valorizing biomass into high‐value‐added products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.